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Advances in underwater imaging enable collection of extensive seafloor image datasets necessary 
for monitoring important benthic ecosystems. The ability to collect seafloor imagery has outpaced 
our capacity to analyze it, hindering mobilization of this crucial environmental information. Machine 
learning approaches provide opportunities to increase the efficiency with which seafloor imagery is 
analyzed, yet large and consistent datasets to support development of such approaches are scarce. 
Here we present BenthicNet: a global compilation of seafloor imagery designed to support the training 
and evaluation of large-scale image recognition models. An initial set of over 11.4 million images was 
collected and curated to represent a diversity of seafloor environments using a representative subset 
of 1.3 million images. These are accompanied by 3.1 million annotations translated to the CATAMI 
scheme, which span 190,000 of the images. A large deep learning model was trained on this compilation 
and preliminary results suggest it has utility for automating large and small-scale image analysis tasks. 
The compilation and model are made openly available for reuse.
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Background & Summary
Spatial data products convey information that is necessary to achieve marine management goals1, including 
monitoring species or habitats of interest, informing policy decisions, and guiding sustainable ocean resource 
use2. The creation of seafloor spatial data products is broadly referred to as “benthic habitat mapping”3,4, which 
describes both biotic and abiotic mapping elements. High quality spatial data underpins accurate benthic habi-
tat maps, and advances in marine sampling technologies and techniques have increased capacity to collect and 
analyze benthic data effectively.

Underwater imagery, including both still photographs and video, is among the most common forms of data 
used to inform benthic habitat mapping. Seabed imagery has great utility for characterizing benthic environ-
ments for several reasons: it is non-invasive and minimally destructive, it may be collected remotely, it may be 
analyzed for multiple purposes (e.g. biology, geology), and it is more efficient to collect and store than physi-
cal samples (e.g. grabs, cores, preserved specimen). In addition to manual in situ (e.g. snorkeling, SCUBA) or 
surface (e.g. drop camera) deployment, imagery is increasingly collected using automated and remote under-
water vehicles (AUVs, ROVs). Each of these deployment methods, but particularly AUVs and ROVs, have the 
potential to generate large volumes of imagery data5,6. In addition to large data volumes, image datasets also 
often have characteristics of spatial, and therefore environmental, redundancy7 — for example, where proximal 
image frames extracted from video data depict similar biological or geological attributes due to positive spatial 
autocorrelation8,9.

Benthic image data is traditionally analyzed by a trained operator, yet this is often inefficient given the vol-
ume and spatial redundancy that typify benthic image datasets. Depending on the detail of analysis (e.g. level 
of taxonomic identification), there is now capacity to collect image data faster than it can be analyzed10 — par-
ticularly in the case of automated platforms such as AUVs. The manual classification, annotation, and labelling 
of seabed imagery therefore acts as a bottleneck in the habitat mapping workflow11, and it is common to analyze 
only small portions of large image datasets to expedite the production of spatial data products. These inefficien-
cies offer opportunities for automation.

Machine learning can facilitate the automation of manual and subjective tasks. A machine learning model 
is created by collecting many samples of example data for a given task, then training a model that accurately 
maps input samples to the desired target outputs. In particular, deep learning allows us to build the complex 
models necessary to solve challenging tasks that would be laborious for a human to perform12–14. Deep learning 
models have revolutionized computer vision over the last 10 years15–17, and have been successfully applied to a 
variety of image processing tasks such as classification15,16,18– 21, semantic and instance segmentation22–24, and 
image generation25–28. Some models have even attained human-level or superhuman performance at narrow 
tasks16,29,30. The dominant network architectures used in the field of computer vision are currently convolutional 
neural networks31, yet other attention-based architectures such as vision transformers21 are increasingly applied.

Successfully training large-scale deep learning models from scratch requires large volumes of data. However, 
a deep neural network that has previously been trained on one task can be repurposed for a new task, provided 
the new task uses similar input stimuli to that used when training the original network. This process, known as 
transfer learning, can save considerable resources, since retraining or “fine-tuning” a model requires much fewer 
computational resources than training a whole new one. This can enable the learning of novel tasks from labelled 
datasets that would otherwise be too small to support training a deep network from scratch. Transfer learning 
is possible because the early layers of a deep neural network need to learn to see image stimuli first in order to 
comprehend and process them. The subtask of seeing and understanding the image stimuli constitutes most of 
the complexity of any image processing task, and this subtask is common to all tasks involving imagery from 
that domain. For image data of the natural world, transfer learning is typically performed by reusing models 
pretrained on the widely available ILSVRC-2012 (ImageNet-1k) dataset29, consisting of 1.28M photographs of 
real world objects scraped from image hosting websites. However, this dataset comprises terrestrial and anthro-
pocentric objects and scenes, and does not represent subaqueous environments. The difference in the domain of 
the input data may limit the capacity for transfer learning.

Development of large-scale models using compilations of benthic imagery that are suitable for transfer learn-
ing purposes would be ideal, yet this is made difficult by a lack of universal labels for seabed features. One of the 
primary difficulties associated with developing deep learning models in this context is that, unlike terrestrial and 
anthropocentric images, there is no objective label for many seabed habitats, biological communities, substrate 
types, or organisms. Indeed, a number of different classification schemes are used to label benthic features32–34. 
Because no single vocabulary is universally applied to describe these features, we currently lack large sets of 
consistently labelled images that are necessary for training deep learning models for benthic environments. 
We note an outstanding need to develop standardized protocols for the translation of common marine image 
labelling schemes.

Self-supervised learning (SSL) is a recent technique in which models can learn to understand their stimuli 
without the use of manually annotated data35–43. Instead of using labelled data, self-supervised models learn to 
solve a pretext task that can be automatically constructed from the input data itself. SSL enables the training of 
large-scale models on unlabelled imagery, which can be collected at scale more easily than annotated imagery. 
Models trained with SSL have already learnt to see and understand the stimuli of interest, and can subsequently 
be used for transfer learning onto specific tasks, even if there is only a limited amount of annotated data available 
for the new task.

SSL may enable the training of deep learning models on large-scale benthic image datasets for the purposes 
of transfer learning on smaller novel tasks (e.g. site-specific habitat labelling), despite the lack of large consist-
ently labelled image datasets. Cumulatively, adequate volumes of benthic image data currently exist to sup-
port the development of SSL models, but they are spread globally among various research groups, government 
data portals, and open data repositories. There is a need to compile and curate datasets for the development of 
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large-scale image recognition models. Such compilations must include images from a range of biomes, depths, 
and physical oceanographic conditions in order to adequately represent the global heterogeneity of benthic 
environments. Additionally, data should be included from an array of acquisition platforms and camera config-
urations to represent the variability in image characteristics (e.g. lighting, resolution, quality, perspective) that 
arise from non-standardized image data collection methods.

The intended applications and scope for a benthic habitat machine learning image dataset dictate qualities 
that images should possess to be useful for automating tasks in this context. Unlike imagery that is focused solely 
on specific biota, benthic habitat images often depict a broader area (e.g. on the order of m2), which necessarily 
includes the seafloor. The goal of analyzing such data is often to broadly categorize the benthic environment, 
potentially including both biotic and abiotic elements44. Biotic characterization may include descriptions of 
individual organisms45 or community composition46, while abiotic components include description of sub-
strate, sediment bed forms, heterogeneity, rugosity, and relief47–49. For these reasons, benthic habitat informa-
tion is often summarized at the whole-image level — for example, by assigning one or several “habitat” labels 
to an entire image using a pre-defined scheme33,34,50, or by aggregating individual labels indicating presence or 
absence, abundance, or percentage cover of individual habitat components, which may be labelled using a more 
detailed vocabulary32. It is therefore useful for benthic habitat images to depict a broad enough area so that both 
abiotic and biotic habitat components may be recognized.

The whole-image labels that typify benthic habitat image datasets may differ from other forms of marine 
image labelling that focus on locating specific objects, semantic labelling, bounding boxes, and masking. 
These forms of labelling are well suited to applications focusing on single taxa, pelagic biota, and object detec-
tion or tracking, and efforts to establish extensive image datasets for those applications are also underway. 
FathomNet51,52, for example, contains over 100000 images and over 200000 localization labels (i.e. bound-
ing boxes) focused generally on marine biota, while Orenstein et al.53 present a dataset of 3.4 million plank-
ton images that have been labelled and used to train deep learning models. Hong et al. have established the 
TrashCan dataset54, containing over 7000 images of marine debris with corresponding bounding box and seg-
mentation masks, which has been used to develop object detection and semantic segmentation models. Other 
comparable image datasets include WildFish for classifying fish species55, the OUC-vision large-scale underwa-
ter image database for underwater salient object detection56, and the Brackish dataset57 for detecting fish, crabs 
and starfish in brackish waters. Multiple datasets have been established to support the automated annotation 
of coral imagery including Moorea Labeled Corals58, the Gulf of Eilat dataset of Raphael et al.59, and notably, 
CoralNet11,60. In addition to serving as a data repository where users can upload and share underwater image 
data and point labels, CoralNet provides a web interface to facilitate labelling and development of image recogni-
tion models. Several other comparable data portals and software packages enable the labelling and centralization 
of marine image data in this way (e.g. FathomNet52, SQUIDLE+, BIIGLE61, VIAME).

Here we describe BenthicNet: a global compilation of seafloor images that is designed to support develop-
ment of automated image processing tools for benthic habitat data. With this compilation, we strive to obtain 
thematic diversity by (i) compiling benthic habitat images from locations around the world, and (ii) represent-
ing habitats from a broad range of marine environments. The compiled dataset is assessed for these qualities. 
Additionally, we aim to achieve diversity of non-thematic image characteristics (e.g. image quality, lighting, 
perspective) by obtaining data from a range of acquisition platforms and camera configurations. The dataset 
is presented in three parts: a diverse collection of over 11 million seafloor images from around the world, pro-
vided without labels (BenthicNet-11M); a rarefied subset of 1.3 million images, selected to maintain diversity 
in the imagery while reducing redundancy and volume (BenthicNet-1M); and a collection of 188688 labelled 
images bearing 3.1 million annotations (BenthicNet-Labelled). We provide a large SSL model pretrained on 
BenthicNet-1M, and demonstrate its application using examples from BenthicNet-Labelled. The compilation 
and SSL model are made openly available to foster further development and assessment of benthic image auto-
mation tools.

Methods
In order to achieve a diverse collection of benthic habitat images for training deep learning models, data span-
ning a range of environments and geographies were obtained from a variety of sources. These initially included 
project partners and research contacts, which were leveraged to establish additional data partnerships with 
individuals, academic and not-for-profit research groups, and government organizations. The largest data vol-
umes were eventually obtained from several academic, government, and third-party public data repositories. 
The acquisition of labelled data was prioritized in all cases, but extensive high quality unlabelled data collections 
were also included where feasible. The desired format for each dataset was a single folder containing unique 
images, accompanied by a single comma separated value (CSV) file indicating, at a minimum, the dataset, file 
name, latitude, longitude, date and time of acquisition, URL (if hosted online) and label(s) (if provided) for each 
image.

Data compilation and quality control.  Labelled benthic image data was initially obtained from project 
collaborators, data partners, and opportunistic sources such as academic journal supplementary materials. The 
formats and varieties of data were diverse, including collections of images with spreadsheet metadata, images 
with metadata contained in file names, GIS files containing images from which metadata was extracted, lists of 
URL image links, and raw video with text file annotations. Datasets that were not formatted as a single folder of 
images or list of URL links with CSV metadata were re-formatted upon receipt. Metadata contained in image 
file names was parsed and used to construct a metadata CSV file where necessary. Image data contained within 
GIS files was extracted using ArcGIS Pro and the ArcPy Python package, along with geographic information and 
other metadata contained within the files. All geographic coordinates were converted to decimal degrees using 
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the WGS 84 datum. Data obtained as video files were subsampled by extracting still frames according to their 
metadata using FFmpeg. After formatting, all datasets were subjected to quality control checks for missing entries, 
duplicates, label consistency, image quality, and matches between images and metadata. Quality control of image 
labels was performed by sampling the metadata and comparing labels to corresponding images for each dataset or 
data source, but this was not exhaustive. Datasets where notable label inconsistencies were detected were rejected. 
Data columns were renamed to match a standardized format for the BenthicNet dataset. All quality control and 
formatting was completed using R and Python. The dataset sources are summarized in Table 1. Additional detail 
on the individual datasets is provided with the BenthicNet metadata62.

Individual contributions.  A number of datasets were contributed by individual project partners; several of 
these were from eastern Canada. The Seascape Ecology and Mapping (SEAM) Lab at Dalhousie University 
provided three datasets for the BenthicNet compilation from this region. Still images were provided (n = 2281) 
that were extracted from passive drop down video drifts conducted in the Bay of Fundy at 281 sites between 
2017–2019 using a 4k camera system63. Whole-image labels were supplied according to site-specific “benthos-
capes” interpreted by the image analyst, which are recognizable combinations of dominant substrate type and 
biological characteristics3,4. All megafauna were additionally identified to the highest possible taxonomic reso-
lution for each image. A dataset of high definition benthic photographs (n = 4064) was also provided from sur-
veys conducted between 2009–2014 at the St Anns Bank marine protected area64, which included whole-image 
benthoscape labels defined for the site. Finally, the SEAM lab contributed photographs of the seabed (n = 62) 
used for the 2017 R2Sonic Multispectral Challenge in the Bedford Basin, Nova Scotia65, which included broad 
whole-image substrate descriptions and, occasionally, biological observations. The 4D Oceans lab at the Fisheries 
and Marine Institute of Memorial University of Newfoundland provided still images (n = 3000) extracted 
from underwater video, as part of the project “Coastal Habitat Mapping of Placentia Bay” conducted off the 
coast of Newfoundland, which included whole-image substrate-derived bottom class labels66,67. The Ecology 
Action Centre (EAC) provided 1220 images collected by citizen scientists via Go Pro-mounted kayak between  
2019–2021 at shallow eelgrass sites in Nova Scotia. These included whole-image labels for the presence or 
absence of eelgrass (Zostera marina).

Several datasets collected by researchers at Memorial University of Newfoundland (MUN) were also con-
tributed from northern Canada. These included 895 images collected for a benthic mapping project in Frobisher 
Bay, Nunavut, between 2015–201668; 1059 images from Wager Bay, Nunavut, collected in collaboration with 
Parks Canada as part of the Ukkusiksalik National Park Marine Baseline Data Collection Project; 541 images 

Source Region № Datasets № Sites

№ Samples

Full collection Subsampled Labelled

Online Repository/Collection

AADC Antarctic 2 86 2056 2024 203

Catlin Seaview Global 22 861 1082452 283674 11346

FathomNet W. USA 8 3381 68908 58196 0

MGDS Global 6 32 15023 6154 0

NOAA (via OneStop) USA 18 526 73019 40714 4543

NRCan Canada 78 1804 23855 18851 3595

PANGAEA Global 1191 1196 764924 236968 40204

SQUIDLE+ Global 691 14187 9166472 608576 85387

USAP-DC Antarctic 5 27 4144 2886 0

USGS USA 5 38 104155 7035 0

Individual Contributions

4D Oceans E. Canada 2 274 3008 2715 3000

DFO (BIO) E. Canada 6 381 7773 5981 7762

DFO (IOS) W. Canada 7 9 16247 1993 10106

EAC E. Canada 1 7 1220 1015 886

Hakai Institute W. Canada 2 45 4735 3609 1697

HAL Jamaica 1 1 505 505 0

LaboGeo/UFES E. Brazil 1 359 359 287 359

MUN Arctic 4 135 10691 6403 10687

NGU Norway 4 580 50290 50275 0

NOAA (NEFSC) N.E. USA 1 2 2240 2065 2240

SEAM E. Canada 3 284 6811 5170 6673

Total Global 2058 24215 11408887 1345096 188688

Table 1.  Summary of BenthicNet data sources including the number of images in BenthicNet-11M (Full 
collection), BenthicNet-1M (Subsampled), and BethicNet-L (Labelled). Further details on the individual 
datasets are provided within the BenthicNet metadata62.

https://doi.org/10.1038/s41597-025-04491-1
https://ecologyaction.ca/


5Scientific Data |          (2025) 12:230  | https://doi.org/10.1038/s41597-025-04491-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

from Chesterfield Inlet, Nunavut, collected for a local benthic habitat mapping project conducted in coordi-
nation with the Government of Nunavut, and University of Manitoba; and 8443 images from the area around 
Qikiqtarjuaq, Nunavut, which were obtained as part of a mapping campaign to monitor a locally harvested 
soft-shell clam population9. These datasets were each accompanied by site-specific whole-image labels describ-
ing the dominant substrate types visible in each image.

Several image datasets were provided by the Hakai Institute from western Canada. A total of 8787 images 
were obtained from nearshore benthic surveys conducted between 2017–2020 from sites on the central coast of 
British Columbia and sites within Pacific Rim National Park Reserve (PRNPR). This data was comprised of still 
images from ROV deployments and GIS-annotated drop camera videos collected primarily for the purposes 
of mapping eelgrass meadows (Zostera marina). Still images were extracted from videos using the methods 
described above (i.e. using FFmpeg). Whole-image labels were provided corresponding to the dominant visible 
substrate and vegetation type present in each image.

Individual datasets were also acquired from outside Canada. The Marine Geosciences Lab (LaboGeo) at 
Universidade Federal do Espirito Santo (UFES) provided quadrat sample images acquired by drop camera dur-
ing rhodolith surveys off the east coast of Brazil between 2015–202069,70. These were cropped to remove the 
quadrat frame, and 360 images were included in the BenthicNet compilation. Whole-image labels were provided 
that identify the presence of rhodoliths and select biogenic substrate types. A dataset of 505 images was provided 
by the Hierarchical Anticipatory Learning (HAL) lab at Dalhousie University, which was collected from Ocho 
Rios, Jamaica, in shallow water by snorkeler in 2022. Images were unlabelled, and comprised coral reef and a 
range of substrate types.

DFO.  Fisheries and Oceans Canada (DFO) is a federal institution responsible for managing many of Canada’s 
marine resources. DFO provided three separate contributions to the BenthicNet compilation. The Population 
Ecology Division at the Bedford Institute of Oceanography (BIO) contributed 645 annotated images from 
George’s Bank, which separates the Gulf of Maine from the Northwest Atlantic. These images were collected 
by the Geological Survey of Canada (GSC) Atlantic for programs under Natural Resources Canada (NRCan) 
using the Campod digitial camera system deployed from the CCGS Hudson in 200071 and 200272. Annotations 
included whole-image benthoscape labels describing the primary substrate and presence of characteristic 
biota. Benthic images were also contributed from a GSC survey on German Bank off the southwest coast of 
Nova Scotia in 200373 using Campod (n = 641), and from DFO Ecosystems and Ocean Science Sector sur-
veys in 200674 (n = 2044), and 201075 (n = 3181) using the Towcam underwater imaging platform. These 
images included whole-image labels describing the dominant visible substrate type, some of which additionally 
included detailed comments describing the proportion of cover for multiple substrate types. A separate contri-
bution from the Habitat Ecology Section at BIO comprised 1262 images from coastal eelgrass and macroalgae 
surveys along the Eastern Shore of Nova Scotia between 2019 and 202076. These images were extracted from 
video footage captured by a GoPro HERO7 (1080p or 2.7k resolution) deployed from a drop-down platform for 
passive drifts at 269 sites. Substrate labels were provided at the whole-image level according to the Coastal and 
Marine Ecological Classification Standard (CMECS)34, as were labels for particular biota, including macroalgae 
and seagrasses. Finally, the DFO Deep-sea Ecology Program at the Institute of Ocean Sciences (IOS), British 
Columbia, contributed data collected during the 2018 Northeast Pacific Seamount Expedition using the ROV 
Hercules. Northeast Pacific Seamount Expedition Partners and Ocean Exploration Trust collected imagery at 
SGaan Kinghlas-Bowie, Explorer, and Dellwood Seamounts off the west coast of Canada in 2018. Video frames 
were extracted every 10 seconds for analysis, and 16247 were included here. Labels were provided for some 
images describing the primary substrate type and also the “biotope” observed, which broadly describes the 
benthic community and/or habitat context (e.g. coral garden, vertical wall, sponge ground). Some images over-
lapped and were thus not originally labelled; in such cases, neighbouring image labels were interpolated where 
not initially assigned due to overlap with other images.

NRCan.  Natural Resources Canada (NRCan) is a federal organization responsible for managing and research-
ing a range of natural resources at the national scale. NRCan makes data freely available via the Canada Open 
Government Portal. The NRCan/GSC Seabed Photo Collection was acquired for this project, which includes 
20260 images recorded from 1804 camera stations across 78 expeditions distributed throughout the waters sur-
rounding Canada. These photographs were collected between 1965 and 2015 using a range of equipment; pho-
tographs taken before 1978 were in greyscale, and after 1978 in colour. Photographs before 2000 were collected 
using film and after 2004 were digital, with both used in the interim. 3767 of the photographs were annotated 
with verbose descriptions of either geological features, biological contents, or both. These descriptions were 
parsed in order to apply whole-image substrate and biota labels (see Data management section below). The full 
list of expeditions associated with this dataset was obtained along with URLs of corresponding metadata CSV 
files in GeoDataBase format from the NRCan FTP server. The GeoDataBase file was processed with geopandas, 
and CSV files were downloaded for each expedition location (URLs were manually corrected for expedition 
82FOGO-ISLE, for which the CSV files were available at URLs containing the string 82FOGO_ISLE instead). 
These CSV files, containing URLs for individual images from the expeditions, were merged together. The year 
of acquisition was inferred from the expedition name, and columns were renamed to match the standardized 
dataset format. Sample images were inspected from each expedition to verify their appropriateness. All images 
from expedition 71014 consisted of collages formed of 2–6 individual photographs, and were excluded.

NGU.  The Geological Survey of Norway (NGU) is responsible for national geological mapping and research, 
including marine applications. NGU contributed 50290 images to this project, which were extracted from 581 
underwater video transects acquired during six cruises. These were carried out between 2010 and 2017 in coastal 

https://doi.org/10.1038/s41597-025-04491-1
https://www.dfo-mpo.gc.ca/
https://www.nrcan.gc.ca/science-and-data/research-centres-and-labs/geological-survey-canada/17100
https://www.nrcan.gc.ca/
https://open.canada.ca/en
https://open.canada.ca/en
https://ftp.maps.canada.ca/pub/nrcan_rncan/Seas_Mer/SeabedPhotoCollection_CollectionPhotosFondsMarins/GSC_Seabed_Photo_Collection.gdb.zip
https://pypi.org/project/geopandas/
https://www.ngu.no/en


6Scientific Data |          (2025) 12:230  | https://doi.org/10.1038/s41597-025-04491-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

areas and fjords of Norway (Astafjorden, Frohavet, Søre Sunmøre, Sogn og Fjordane, Ofoten, Tysfjorden, and 
Tjeldsundet), as part of several “Marine Base Maps” projects. The videos were acquired using a camera rig towed 
near the seafloor (0 m to 200 m depth) from the NGU research vessel Seisma. The 2010 cruises (codes 1002 and 
1007) used a 720 × 480 digital video camera, while all the other cruises (codes 1408, 1508, 1511, and 1706) used 
a higher-resolution GoPro HERO3+. The images were obtained by extracting one video frame every 10 seconds 
of video footage.

MGDS.  The Marine Geoscience Data System (MGDS) is a data repository that offers public access to a 
curated collection of marine geophysical data products and complementary data related to understanding the 
formation and evolution of the seafloor and sub-seafloor. MGDS provides tools and services for the discov-
ery and download of data collected throughout the global oceans produced primarily by researchers funded 
by the U.S. National Science Foundation. Six datasets were obtained from MGDS, in collaboration with the 
Lamont-Doherty Earth Observatory at Columbia University. Four of these were collected from the Long Island 
Sound Estuary in 2012 and 2013 using the United States Geological Survey (USGS) Seabed Observation and 
Sampling System (SEABOSS), Integrated Seafloor Imagery System camera sled, and the Kraken2 ROV77. One 
dataset was obtained from the East Pacific Rise Spreading Center during the 2011 Atlantis expedition, using 
an Insite Scorpio Digital Camera mounted on the ROV Jason II. The final dataset was acquired by the Schmidt 
Ocean Institute (SOI) during the 2020 R/V Falkor expedition FK200429 off the northeast coast of Australia. 
Here, the ROV SuBastian was mobilized and images were obtained using a Subsea Systems and Inc. Z70 Digital 
Camera. All datasets from MGDS were manually reviewed and filtered to remove surface images (e.g. on the 
research vessel) and duplicates.

NOAA.  The U.S. National Oceanic and Atmospheric Administration (NOAA) is a federal science institu-
tion that conducts extensive marine research. NOAA hosts diverse collections of environmental data that are 
made available to the public. Benthic images were sourced from the NOAA data repository for addition to the 
BenthicNet dataset. Candidate data were identified using the NOAA OneStop portal, using the search strings 
“benthic”, “habitat”, “image”, “camera”, and “photograph”. Datasets returned not containing image files were 
rejected. The remainder were reviewed manually, and datasets were additionally rejected that did not meet 
quality or content standards. Reasons for rejection included substantial proportions of non-benthic images (e.g. 
above-water, pelagic, individual animals, air photos), partial or full scene obstruction by non-benthic objects 
(e.g. equipment, ROV/AUV parts), highly inconsistent image content or quality, and incoherent dataset or 
metadata formatting (e.g. unorganized collections of various types of data, metadata not readable via script). 
Datasets were also excluded that did not meet the metadata requirements of this project — namely, those lacking 
metadata entirely, or lacking geographic locations for images. Where the latter occurred, efforts were made to 
estimate image locations using available information; for example, by assigning general study site coordinates 
to images, or by assigning the mean geographic centre of other images at the study site. Datasets that were oth-
erwise suitable for inclusion were generally not rejected due to poor image quality or low resolution alone. All 
datasets were subjected to the quality control checks listed previously before downloading for inclusion in the 
BenthicNet collection, and columns were renamed to match the standardized dataset format. Several datasets 
included labels associated with the National Coral Reef Monitoring Program (NCRMP) describing the benthic 
cover, which primarily comprised coral taxa and substrate labels applied to both whole-images and points. These 
labels were retained.

Additional data was contributed by the NOAA Northeast Fisheries Science Center (NEFSC). These included 
benthic images from Georges Bank, the Mid-Atlantic Bight, and off the coast of Cape Cod (n = 2240). Image 
surveys were conducted in 2015 using the NOAA HabCam benthic imaging platform. Whole-image labels were 
provided indicating the primary and secondary substrate types, and also the presence of certain taxa (mussels, 
Didemnum tunicates, bryozoans).

USGS.  The United States Geological Survey (USGS) is a federal organization that conducts earth science 
research and provides public geoscience information and data. A series of unlabelled benthic image datasets 
were retrieved from the USGS Science Data Catalogue. Several of these were initially discovered from review 
of the scientific literature78,79, and the remainder were discovered by querying the repository using the search 
strings “benthic”, “habitat”, “image”, “camera”, and “photograph”. Candidate datasets were screened using the 
same methodology as outlined above for data retrieved from the NOAA repository. Datasets were rejected that 
did not contain images, contained non-benthic images, were largely obstructed by non-benthic objects, or were 
formatted incoherently. Where precise image locations were not provided, estimates were obtained using the 
mean centre of the study site bounding box coordinates. All candidate datasets were subjected to the quality 
control checks listed previously and columns were renamed to match the standardized dataset format.

USAP-DC.  The U.S. Antarctic Program Data Center (USAP-DC) is funded by the U.S. National Science 
Foundation and is a domain repository for U.S. Antarctic Research data from all disciplines. Five unlabelled 
datasets were obtained from USAP-DC. These were discovered from the USAP-DC website using the search 
strings “benthic”, “habitat”, “image”, “camera”, and “photograph”. Datasets were screened using the methodology 
described for the NOAA and USGS repositories. Additionally, some images that did not depict the seabed (e.g. 
pictures on the boat deck) were manually omitted. The mean centre of the study site bounding boxes were used 
to estimate image locations where precise positioning was not provided. These were checked for quality using 
the methodology described previously and columns were renamed to match the standardized dataset format.
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AADC.  The Australian Antarctic Data Centre (AADC) is a long-term repository for Australia’s Antarctic 
data. This data is freely and openly available for scientific use. Two datasets were obtained for this project from 
the AADC data portal. Seafloor images (n = 203) from the Sabrina slope, East Antarctica, were collected in 
2017 over four transects during survey “IN2017_V01” using the Australian CSIRO Marine National Facility’s 
Deep Tow Camera80, and were downloaded along with associated metadata from AADC. These included 
whole-image labels indicating the substrate type coverage and the presence of biota; the former were retained 
here. Additionally, Geoscience Australia and the Australian Antarctic Division collected underwater photo-
graphs in 2011 at 97 sites in the Mertz Glacier region of Antarctica81, and 1853 images were acquired for this 
project. Images and metadata from both datasets were checked for quality and formatted for standardization 
with the BenthicNet compilation.

SQUIDLE+.  SQUIDLE+ is an online tool for managing, exploring, and annotating images and video of the 
seafloor. It also serves as a global repository, containing standardized records for images collected by different 
groups around the world. SQUIDLE+ is a living product that is updated continuously with new images and 
labels. A snapshot of the images available on SQUIDLE+ was acquired on April 13, 2023. The SQUIDLE+ web 
API was used to download the records for every image on SQUIDLE+, totalling 9166472 at that time. The pagi-
nated download was joined together and merged into a single CSV file, and columns were renamed to match our 
standardized format for the compilation.

Several of the large individual SQUIDLE+ datasets in this collection additionally included publicly acces-
sible image annotations. These included Australia’s Integrated Marine Observing System (IMOS), which dis-
tributes oceanographic data from a consortium of Australian institutions that is freely and openly available to 
the scientific community. This data included a large number of images collected by the IMOS AUV Facility, 
notably, using Sirius and Nimbus AUVs. IMOS images available from SQUIDLE+ were cross-referenced with 
data entries from the Australian Ocean Data Network (AODN) portal for this project. Labelled images were 
also provided by the Reef Life Survey (RLS)82,83, which is a global citizen science program that trains SCUBA 
divers to conduct underwater visual surveys of shallow reef biodiversity in temperate and tropical reef habitats, 
typically between 2m - 20m depth. Divers capture approximately 20 images per survey using an underwater 
camera positioned approximately 50 cm from the substrate, and images vary in resolution and quality due to 
camera configuration and environmental conditions. The Schmidt Ocean Institute (SOI) is a non-profit foun-
dation established to advance global oceanographic research that hosts a large labelled image collection on 
SQUIDLE+. Deployed from the SOI R/V Falkor, the ROV SuBastian has collected high resolution images from 
waters around the world, including the deep ocean. All oceanographic data collected by the SOI are made openly 
available for research purposes. The National Environmental Science Program (NESP) Marine Biodiversity 
Hub84 has also provided a large labelled image dataset. This project aims to provide foundational science for 
conservation in Australian and provides data openly in support of marine research. Each of the above data-
sets included sub-image point labels identifying underlying physical or biological elements according to the 
CATAMI scheme32. Finally, the image dataset presented by Yamada et al.85 collected via AUV from the Southern 
Hydrate Ridge was downloaded from a separate SQUIDLE domain, SOI SQUIDLE+, along with point annota-
tions describing substrate or biotic elements according to a site-specific scheme.

FathomNet.  FathomNet52 is an open-source underwater image database with global scope operated by the 
Monterey Bay Aquarium Research Institute (MBARI). FathomNet is soliciting contributions from around the 
world to develop a large open-source database of images that may be used to develop artificial intelligence 
algorithms, with a focus on identifying marine species. Like SQUIDLE+, FathomNet is a living product that is 
updated continuously. We used the FathomNet Python API to download a snapshot of the images available on 
FathomNet as of April 6, 2023. The code for this API call is provided in Supplementary Material B. At the time 
of downloading, these images were primarily acquired from Pacific Waters around California, Western USA. 
Records were partitioned into “sites” based on the directory structure in the URL. Where not available in the 
record itself, timestamps were extracted from image names, where possible. Columns were renamed to match 
our standardized format. Many of the images were annotated with bounding boxes around animals and other 
concepts appearing in the images. However, annotations were available only under a No Derivatives license  
(CC BY-ND 4.0), which prohibited conversion to other schemes and formats. All FathomNet annotations were 
thus discarded.

PANGAEA.  PANGAEA is an open access repository aimed at archiving, publishing and distributing georef-
erenced data from earth system research, hosting 678 projects and 408811 datasets from various fields at the 
time of writing. We searched and retrieved benthic image datasets from PANGAEA with a combination of API 
calls and web-scraping, then pruned the resulting datasets and reformatted them. The pangaeapy Python pack-
age86 was used to interface with the PANGAEA library. Using the PanQuery API, PANGAEA was searched 
for 20 queries with various combinations of benthic environment related keywords to find photographs of the 
seafloor (see Supplementary Material A for complete list). The PanDataSet API was used to retrieve the 
metadata for the dataset IDs identified in these searches. Some IDs corresponded to dataset series, which list 
multiple child datasets. In these cases, all child datasets were retrieved. Some datasets were available in tabular 
format, and were downloaded directly. Other datasets were paginated, with images hosted on webpages on 
PANGAEA; these could not be downloaded with the API and were scraped with a custom webscraper using the 
BeautifulSoup4 and request libraries.

All datasets returned by this search as of January 1, 2024 were downloaded and results were filtered as fol-
lows. (1) Datasets that did not possess a column containing the word “url” or “image” that was populated by 
hyperlinks to files in an image format (TIFF, JPEG, PNG, BMP, CR2) were removed to enable automation of 
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the data acquisition process. It was not possible to verify any ZIP file would contain images without download-
ing it, and was impractical to automatically associate metadata with the images within a ZIP file of unknown 
structure. Datasets with images only available to download as a ZIP file were thus discarded. (2) False positives 
from the search (datasets comprising imagery not of the seafloor) were filtered out by removing datasets with 
titles containing undesired keywords appearing in a manually curated blacklist (e.g. “aquarium”, “meteorological 
observations”, “sea ice conditions”, “do not use”). (3) URLs for images consisting of maps, other dataset summary 
figures, and inappropriate photo subjects were filtered out by removing data hosted on PANGAEA subdomains 
dedicated to subjects such as maps, projects, publications, sea ice, and satellite imagery. (4) Images were removed 
where the URL contained text indicating the subject matter was otherwise inappropriate (e.g. “dredgephotos”, 
“grabsample”, “core”, “aquarium”, “divemap”). Finally, the columns in the CSV files were renamed to our stand-
ardized format. Details for individual datasets are provided with the BenthicNet metadata62.

Several of the datasets obtained from PANGAEA included thematic labels corresponding to benthic images. 
Many of these were labels of specific biota identified to the highest possible taxonomic resolution, some of 
which included estimates of percentage cover of each organism in the image. Several of the latter datasets com-
prised experimental growth plates harbouring the labelled biota. Some datasets additionally included labels for 
trash and anthropogenic debris. All labels were dropped where datasets indicated usage of machine-assisted 
annotation instead of manual annotation. Finally, additional point labels were obtained for datasets from the 
Great Barrier Reef Marine Park, eastern Australia, collected for habitat mapping purposes by the University of 
Queensland Remote Sensing Research Centre. These datasets comprised quadrat images collected via snorkel 
and diving from over 100 reefs throughout the Great Barrier Reef Marine Park87–89. Points were labelled accord-
ing to a custom scheme used for these projects at the Great Barrier Reef that describe biotic and abiotic elements 
found within the reef. Additional labels were also provided indicating the biotic functional group, and a simpli-
fied classification scheme applicable to a global context.

XL Catlin Seaview Survey.  The XL Catlin Seaview Survey was a large-scale project undertaken between 2012–
2018 to document and study the status of coral reefs globally using underwater imagery. Surveys focused on 
shallow reefs typically around 10 m depth and comprised linear transects ranging between 1.6 km 2 km in 
length. Downward-facing seabed images of approximately 1 m2 were acquired using Canon 5D MII cameras 
mounted on a self-propelled diver-operated platform called the “SVII”6,90. Data from the project is made openly 
available for further scientific research. For this project, 1082452 images from 860 surveys organized into 22 
regional datasets were downloaded from the University of Queensland data repository. Tabular data providing 
image metadata was also acquired in CSV format, including image point labels identifying biotic and abiotic 
elements using the global scheme applied above for the Great Barrier Reef mapping projects. The metadata were 
renamed and formatted to match the standardized BenthicNet compilation.

Data management.  In total, 11408887 images were collected from the sources described above (see Data 
compilation and quality control). The greatest discrepancy within this collection was the presence of image labels. 
Of all the images acquired, only 188688 included labels corresponding to visible benthic elements. The presence 
and composition of labels in many ways determines the utility of the dataset; labels enable training and valida-
tion for supervised modelling tasks, such as localized species or substrate identifications91,92, or bottom type 
classification93. There are several ways, though, that unlabelled data may still be utilized using unsupervised85, 
semi-supervised94–97, and self-supervised35–37,39,43,98,99 approaches. To facilitate a range of potential applications, we 
consider the dataset in two ways hereafter: the full set of images without their labels (unlabelled; BenthicNet-11M)  
and the set of labelled images (BenthicNet-Labelled).

Labelled data.  In order to increase the utility of the compiled data, and to facilitate validation of models trained 
on it, image labels from all datasets were translated to the CATAMI classification scheme32 (version 1.4), which 
spans both substrate and biota categories. Biota labels were additionally mapped to the World Registry of Marine 
Species (WoRMS) taxonomy100.

Images were originally labelled according to a range of different established and bespoke schemes, yet a large 
number of these (for example, the labelled data acquired from SQUIDLE+) were readily available as CATAMI 
labels. Additionally, the qualities of CATAMI provide a flexible framework that may accommodate translation 
and integration of a broad range of other labelled data. First, CATAMI supports labels for multiple classes of 
benthic features, including “branches” for both biota and physical elements such as substrate, bedforms, and 
relief. This enables the translation of a range of labelled datasets that were initially collected for a variety of differ-
ent purposes. Second, the labels within these branches are hierarchical. This means that objects may be labelled 
at different or even multiple levels of detail depending on the quality of the data, the confidence of the analyst, or 
the requirements of a particular application. This characteristic is critical for the translation of the multi-source 
data compiled here, which were initially analyzed at a range of thematic (e.g. taxonomic) resolutions for different 
purposes. Finally, CATAMI implements labels that are designed to be visually recognizable from image data. 
At a coarse level, these may distinguish broad groups or phyla of biota, but at finer levels, where identifying 
individual genera or species may become difficult using image data alone, morphological labels may be applied. 
These describe the size, shape, colour, and growth form of an organism, which may be recognizable where the 
taxonomy is ambiguous. Detailed taxonomic labels often require specialized knowledge or biological expertise, 
whereas morphological labels enable collaborative classification and translation of imagery by non-experts.

Translation of all image labels to the CATAMI scheme was performed by a team of BenthicNet collaborators 
(e.g. Table 2). All unique labels were extracted for each labelled image dataset in turn, which included cases of a 
single label indicating one benthic feature (e.g. sediment type or biota), a single label indicating multiple features 
(e.g. sediment type and biota), or multiple labels for different features (e.g. one for sediment type, one for biota). 
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Each unique label for each dataset was translated to its closest CATAMI equivalent(s), maintaining the hierar-
chical level of the original data as closely as possible. In some cases, additional information within the metadata 
such as comments or auxiliary labels were used to complete the translation. Some annotations were provided 
in schemes that extend versions of CATAMI, such as the Australian Morphospecies Catalogue, which provides 
more precise morphological detail for the shape of sponges, for example. Where this was done systematically 
and with more than 10 samples, we extended our scheme by adding child nodes to correspond to the increased 
level of morphological detail. Some annotations included man-made objects, such as trash or cables, which fell 
outside the scope of the CATAMI scheme, but which may have value toward monitoring the anthropogenic 
impact on benthic habitats. Thus we also added an additional Anthropogenic branch to the hierarchy to cater to 
these annotations. We include fields for CATAMI modifiers that indicate additional information about image 
labels, such as whether organisms are bleached or dead, or their colours, where available.

Some datasets provided taxonomic labels of biota at a high level of detail (genus or species level). To retain 
this information, taxonomic biota labels were additionally assigned an AphiaID from the World Registry of 
Marine Species (WoRMS). Where detailed taxonomic labels could not be determined, remaining biota anno-
tations (e.g. morphological descriptions from CATAMI) were also mapped onto the WoRMS taxonomy at the 
highest level of specificity possible (typically phylum, class, or order).

In total, there were 188688 labelled images, 3091158 individual CATAMI labels, and 1131391 WoRMS taxo-
nomic labels for the BenthicNet compilation. The counts for each individual label are provided with the dataset 
hosted on the Canadian Federated Research Data Repository (FRDR)62.

To enable consistent validation and benchmarking between models using the BenthicNet dataset compila-
tion, we propose train and test partitions of the labelled data. Test data were selected according to a partially 
spatial and stratified procedure in order to ensure representation of a broad range of labels, and to reduce the 
degree of similarity between test and training partitions caused by spatial autocorrelation.

The challenge in partitioning the dataset stems from the multi-label nature and imbalanced proportions 
of labels in BenthicNet. Firstly, the imbalance necessitates careful assignment of rarer labels in the dataset. 
Additionally, a single image may have any combination of labels across multiple branches of the CATAMI hier-
archy. If an image is assigned to test or training partitions due to a particular label, we must consider how the 
assignment affects other labels on the same image, some of which will be rarer.

Our partitioning process was as follows. We selected the target number of annotations per label to place in 
the test set as the smaller of 15% of the number of samples for the most frequently occurring label and 35% of 
the samples for the median label. We incrementally added images to train or test partitions one at a time. We 
considered the available image labels in each iteration, and selected the next label to add to a partition based on 
the following factors, in order of priority. 

	 1.	 Ensure at least two samples for each label can be placed in the train partition.
	 2.	 Ensure at least 50% of the samples for each label can be placed in the train partition without using samples 

within 50 m of a test sample.
	 3.	 Ensure at least 15% of the samples for each label can be placed in the test partition without using samples 

within 50 m of a train sample.
	 4.	 Ensure no more than 35% of the samples for each label would be placed in the test partition.
	 5.	 Prioritize the CATAMI label with the fewest remaining images which can be allocated to the train/test 

partition.

Original

CATAMI WoRMS

Substrate Biota AphiaID Taxonomy

Cobble
Substrate

↳ Consolidated (hard)
↳ Cobbles

— — —

Mud and tube worms
Substrate

↳ Unconsolidated (soft)
↳ Sand / mud (<1mm)

↳ Mud / silt (<64um)

Worms
↳ Polychaetes

↳ Tube worms
883 Annelida

↳ Polychaeta

Hard Coral:Non hermatypic:Free 
living (Fungia etc) —

Cnidaria
↳ Corals

↳ Stony corals
↳ Solitary

↳ Free living

1363
Cnidaria

↳ Hexacorallia
↳ Scleractinia

Pocillopora sp. —
Cnidaria

↳ Corals
↳ Stony corals

206938

Cnidaria
↳ Hexacorallia

↳ Scleractinia
↳ Pocilloporidae

↳ Pocillopora

Table 2.  Examples of original image labels translated to hierarchical labels according to CATAMI v1.4 and 
WoRMS. Some original labels indicated both substrate and biota, while others indicated only one of these. For 
biota, some original labels provided more morphological detail and others more taxonomic; as much detail was 
retained as possible in both the CATAMI Biota and WoRMS taxonomic translations, respectively.
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After determining the next label for which a sample will be added to a partition, and the partition to which it 
should be added, we selected an image bearing that annotation to add to the partition as follows: 

	 1.	 Of the images bearing the desired label, if any images are within 50 m of an image already in the target 
partition, randomly select an image from the closest 10% of those images.

	 2.	 Otherwise, randomly select an image bearing the desired label that is not within 50 m of an image already 
allocated to the other partition. Images violating the 50 m exclusion zone were used if needed to satisfy the 
minimum populations for each partition described above (50% in train, 15% in test).

In practice, this means that partitions grow spatially outwards from initial seed locations, with new locations 
being seeded at random when needed in order to represent new label classes. Any remaining samples that have 
not been assigned through this process were allocated to the test partition if within 50 m of an image already in 
the test partition, and to the train partition otherwise.

Effectively, test data was selected to prioritize representation of CATAMI labels, and then to minimize spa-
tial overlap with the training data, to the maximum extent possible. Because the computation of this algorithm 
scales O(n2) with data size, it was run in parallel on 37 subsets of the data, each corresponding to a different 
Ecological Marine Unit101 (EMU; see Unlabelled data exploratory analysis section). 142767 images (75.66%) were 
assigned to the training partition and 45921 (24.34%) to test. The code for obtaining training and test partitions 
of the labelled data is provided at the BenthicNet code repository (see Code availability section below).

Unlabelled data.  All images collated in BenthicNet may be used for unlabelled applications, including those 
images that have labels, thus for the “unlabelled” slice of the data we considered all 11408887 images. We refer 
to the full collection as BenthicNet-11M. These images were not distributed uniformly in space; some datasets 
were characterized by a low sampling intensity, with only a few images per recording site taken manually by 
divers, while others were densely sampled — for example, where images were extracted from AUV video. In 
order to reduce the redundancy of the densely sampled data (thereby also reducing data volume and imbal-
ance) the unlabelled data was subsampled spatially, as described below. We refer to the subsampled dataset as 
BenthicNet-1M.

The aim of the subsampling procedure was to obtain a manageable unlabelled data volume without reducing 
the breadth of benthic environments represented. Many datasets indicated which images were collected at the 
same recording station, or the same camera deployment/transect. We collectively refer to this location annota-
tion as a “site”. To maximize spatial and thematic diversity of images, subsampling was performed separately for 
each unique site in the unlabelled datatset.

In order to subsample the data spatially, we first determined a desirable number of images that should be 
drawn from a given site based on the data density. The base target number of images sought at each site was set 
to 250, meaning that the subsampling procedure would not reduce the number of images below this number. 
Not all component datasets indicated whether images were collected at the same site, despite containing images 
from multiple distinct locations that would meet our “site” criteria. To address this, we automatically detected 
the number of “pseudo-sites” within an annotated site, or within a dataset originally lacking any site labels. 
Pseudo-sites were determined as clusters of samples at least 1000 m from each other. The target number of sam-
ples was scaled up by the number of pseudo-sites within a labelled site. Some (pseudo-)sites additionally had 
gaps between them of several hundred metres, which we refer to as “subsites”. The target number of samples for 
a site was increased by 50 for each subsite within it separated by at least 100 m.

After determining the target number of images to draw from each site in the unlabelled dataset, the data 
was subsampled spatially. Sites with fewer than 40 samples per pseudo-site were not subsampled. At sites with 
more than 40 images, images were subsampled with a target separation distance of Δ = 1.25 m according to the 
following procedure. 

	 1.	 Add the first image in the dataset.
	 2.	 Continue through the list of images in the dataset (sorted in collection order; i.e. chronologically) until 

finding the first image at least Δ = 1.25 m from the last image added to the dataset.
	 3.	 Add either this image or the previous image in the list, whichever is closest to being a distance Δ = 1.25 m 

from the last image added to the dataset.
	 4.	 From the list of remaining images to consider, remove all images collected within Δ/2 = 0.625 m of this 

image.
	 5.	 Return to Step 2; repeat until reaching the end of the dataset.
	 6.	 Add the last image in the dataset if it was at least Δ/2 = 0.625 m from all other images.

Sites lacking precise coordinate information for each image could not be subsampled spatially. In these cases, 
sites were subsampled by keeping every n-th image (ordered chronologically) at the site to achieve the desired 
number.

Many sites still had more images than their target number of samples after this initial spatial subsampling, so 
this process was repeated with larger separation distances until the target subsample size was achieved at each 
site, or a maximum downsampling separation distance of 20 m was reached. Separation distances were scaled 
up by factors of 2, 3, 4, 6, 8, 10, 12, 14, or 16 compared to the base subsampling of 1.25 m target separation to 
achieve the desired subsample size (i.e. Δ = 2.5 m, 3.75 m, …, 20 m). The subsampling distance selected (and 
hence subsampled set of images at that site) was the largest distance that did not reduce the total number of 
images below the target for the site (250+), determined as described above. The subsampling procedure selected 
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1345096 images (11.8% of the total) to be included in the subsampled BenthicNet dataset (Fig. 1), which we refer 
to as BenthicNet-1M.

Downloading.  We downloaded images available online by using the Python requests package. URLs were 
retried at least five times if the server was busy. Images that could not be found at their URL, that were truncated, 
or which could not be opened after downloading, were removed from the final dataset. In total, the download 
process took approximately six months.

Compression.  Large images were downsampled such that their shortest side was around 512 pixels in length 
with 10% tolerance, respecting the original aspect ratio, and then converted to JPEG format for the BenthicNet 
compilation. The full original uncompressed images are available at URLs provided with the dataset62.

Data Records
All BenthicNet data, metadata, and models described here are available from the Canadian Federated Research 
Data Repository (FRDR)62. These include (i) a CSV file with an entry for each image in the subsampled com-
pilation (“BenthicNet-1M”), conforming to the convention presented in Table 3; (ii) a single CSV file with an 
entry for each label of each image of the labelled compilation (“BenthicNet-Labelled”), conforming to the format 
presented in Table 4; (iii) a tarred directory containing each image in BenthicNet-1M and BenthicNet-Labelled 
(as described in the CSV files above), resized and compressed to JPEG format; (iv) a version of the entire 
image compilation tarred at the individual “dataset” level; and (v) the ResNet-50 model weights resulting from 
self-supervised training on the entire unlabelled dataset as described in the following Technical Validation 
section. We additionally include CSV files listing the counts of each individual CATAMI label present in the 
labelled compilation, and also a list of WoRMS taxonomical labels present within the metadata CSV. The “image” 
directory hosted on FRDR is divided into “labelled” and “unlabelled” components, which contain the full tarred 
(full_labelled_512px.tar) and individual dataset tars (individual_datasets_tars) versions 
of the images. Both directories are organized by “dataset”, which contain sub-directories corresponding to the 

Fig. 1  Distribution of images after spatial subsampling projected to Equal Earth. (Top) images according to 
data source and (bottom) aggregated by their density and scaled logarithmically.
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“site”. Thus, it is possible to query the image compilation using the corresponding CSV metadata fields “dataset” 
> “site” > “image”. A detailed overview and description of the dataset and metadata file structure is provided 
in the BenthicNet repository62 README file (“00_Documentation/README.txt”). The metadata and models 
are available for use without restriction under the Creative Commons Attribution 4.0 License (CC-BY-4.0). 
Most images are available for use without restriction under CC-BY-4.0, except where the original licenses of 
individual datasets indicate limitations to derivative or commercial uses. The individual licenses for all datasets 
comprising BenthicNet are retained, which are available along with the metadata within the repository.

Data formats.  All unlabelled image metadata were standardized to a common format (Table 3). The datetime 
field was completed to the highest level of precision possible. Times were converted to UTC where timezones 
were indicated, and assumed to be UTC otherwise; it is not possible to guarantee all times are in UTC. Missing 
datetime and coordinate information was imputed everywhere where reasonably possible — for example, by 
assigning the geographic mean centre of the image acquisition site where coordinates were missing for some 
images at a given site. In some cases, any of month, day, hour, minute, and second datetime information was miss-
ing, and was imputed to achieve the desired format (Table 3); as a whole, this information should be considered 
accurate to the year. Labelled images were additionally assigned metadata describing the original and translated 

Column Contents Data-type Units Coverage

url URL address for this image String 100.00%

source Data provider/repository String 100.00%

dataset Name of dataset String 100.00%

site Image location name String 100.00%

image Image filename String 100.00%

latitude Latitude (WGS 84) Float Decimal degree 99.63%

longitude Longitude (WGS 84) Float Decimal degree 99.63%

datetime Acquisition date and time (UTC) String YYYY-MM-DD HH:mm:ss 99.85%

gebco_bathymetry Depth interpolated from GEBCO2022 Float Metres 99.63%

emu Nearest Ecological Marine Unit Integer 99.63%

Table 3.  Format for compiled BenthicNet-1M unlabelled image metadata.

Column Contents Data-type Units Coverage

url URL address for this image String 100.00%

source Data provider/repository String 100.00%

dataset Name of dataset String 100.00%

site Image location name String 100.00%

image Image filename String 100.00%

latitude Latitude (WGS 84) Float Decimal degree 100.00%

longitude Longitude (WGS 84) Float Decimal degree 100.00%

datetime Acquisition date and time (UTC) String YYYY-MM-DD HH:mm:ss 100.00%

partition Train/test split allocation String 100.00%

annotation_column Relative x location of labelled pixel Float Fraction of image width 53.11%

annotation_row Relative y location of labelled pixel Float Fraction of image height 53.11%

original_label Original image label String 82.10%

catami_biota CATAMI biota label String 75.59%

catami_substrate CATAMI substrate label String 70.30%

catami_bedforms CATAMI bedform label String 6.87%

catami_relief CATAMI relief label String 2.46%

catami_qualifiers CATAMI label qualifier String 10.82%

colour_qualifier Label colour qualifier String 6.52%

bleached Whether biota is bleached Float Values 0 or 1 13.44%

dead Whether biota is deceased Float Values 0 or 1 25.76%

aphia_id WoRMS taxon AphiaID label Integer 60.73%

gebco_bathymetry Depth interpolated from GEBCO2022 Float Metres 100.00%

emu Nearest Ecological Marine Unit Integer 99.98%

Table 4.  Format for compiled BenthicNet-Labelled image metadata. Coverage is the fraction of images that 
have at least one such metadata entry.
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CATAMI labels, and WoRMS AphiaIDs (Table 4). Metadata indicating the pixel location of image labels (i.e. the 
relative x and y position of the labelled pixel) were retained where provided.

Technical Validation
Unlabelled data exploratory analysis.  The subsampled BenthicNet dataset contains images from loca-
tions around the world (Fig. 1). Several regions are densely sampled — notably, the entire Australian coast, the 
Iberian Peninsula, the Norwegian and Greenland Seas, the Eastern Canadian and Northeastern U.S. continental 
shelves, the Western Canadian and Western U.S. continental shelves, and also some of the Antarctic coast, includ-
ing parts of the Antarctic Peninsula and Weddell Sea. Other regions are comparatively under-sampled, such as 
the Indian Ocean including the coast of South Asia, and the South Atlantic including the eastern coast of South 
America and west coast of Africa. Images collected in the open oceans are more dispersed than those at the con-
tinental shelves.

Environmental heterogeneity.  Given the spatial heterogeneity in benthic image sampling intensity, it is impor-
tant and informative to assess the environmental and geographic diversity of these images. Images in the com-
piled datasets were acquired between 1965–2021 from depths ranging from  <1 m to over 5500 m (Fig. 2). Sayre 
et al.101 introduced a three-dimensional partitioning of the global oceans into statistical clusters based on a 
57-year climatology of physiochemical oceanographic measurements102–105. These 37 “Ecological Marine Units” 
(EMUs) represent a concise and objective summary of global marine environments at 0.25° horizontal resolu-
tion, and are freely available for download. The bottom-layer EMUs were extracted to assess the distribution of 
BenthicNet image samples across global benthic environmental regions. Each image was assigned the nearest 
bottom-layer (i.e. seafloor) EMU in space to compare the sampled frequency of each environment to the pro-
portion of area covered by each EMU (Fig. 3; Fig. 4). A similar analysis was conducted to assess the represent-
ativeness of image samples across the broader global oceans by comparing the sampled frequency to the area 
of each ocean basin, according the the EMU attributes (Fig. 5). The nearest EMU to each image is provided as 
a metadata field for both the BenthicNet-1M and BenthicNet-Labelled datasets; depths from the GEBCO2022 
grid are also provided for each image (assigned using bilinear interpolation; Table 3, Table 4).

Generally, images were distributed more evenly across the bottom-layer EMUs than would be expected from 
a random sample, while the distribution across the major ocean basins more closely matched expectation. The 
majority of the global seafloor (82.4%) is classified into EMUs 14 (deep, very cold, normal salinity, moderate 
oxygen, high nitrate, low phosphate, high silicate), 13 (deep, very cold, normal salinity, low oxygen, high nitrate, 
medium phosphate, high silicate), and 36 (deep, very cold, normal salinity, moderate oxygen, medium nitrate, 
low phosphate, low silicate)101, comprising most of the Pacific, Indian, and polar oceans. These environments 
are not over-represented in the BenthicNet dataset, with no single EMU accounting for  >20.6%. The three most 
common EMUs sampled (47.6%) were 24 (shallow, warm, normal salinity, moderate oxygen, low nitrate, low 
phosphate, low silicate), 11 (shallow, cool, normal salinity, moderate oxygen, low nitrate, low phosphate, low sil-
icate), and 13 (deep, very cold, normal salinity, low oxygen, high nitrate, medium phosphate, high silicate), rep-
resenting continental shelves in the equatorial regions, the shallow sub-tropics, and the deep Pacific and Indian 
oceans. The distribution of images across ocean basins was generally proportionate to the expectation given the 
area of each ocean, but notable exceptions include an apparent under-representation of the South Atlantic, and 
over-representation of the South Pacific.

Fig. 2  Distribution of BenthicNet-1M images according to (a) (log scale) depth data retrieved from the 
GEBCO2022 grid111 and (b) year of acquisition.
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Self-supervised learning.  As a minority of the imagery was labelled, we sought to utilize the unlabelled data by 
using self-supervised learning (SSL) to train an encoder that may be adapted to downstream tasks on the labelled 
data. As a series of benchmarks, we examined four recent SSL methods using a ResNet-50 model architecture, 
trained on the BenthicNet-1M data. These four methods are from a family of techniques known as instance 
learning and consist of SimSiam40, Bootstrap Your Own Latent (BYOL)39, Momentum Contrast (MoCo-v2)106, 
and Barlow Twins (BT)99. We found that overall, the methods performed similarly, with BT performing consist-
ently well at the downstream classification tasks. All subsequent analyses following initial experimentation and 
reporting uses Barlow Twins as the representative method for SSL.

As an instance learning method, BT’s pretext task for learning a useful embedding space works with the 
encoded representations of a batch of images. Each image in the batch, X, is distorted twice using transfor-
mations independently randomly selected from a predefined transformation-generator, producing two input 
views, XA and XB. The transformation-generator is constructed such that it does not alter the apparent identity 
of the contents of the image, but does alter other aspects of the image such as the colour balance, contrast, and 
zoom. Each batch of transformed images is passed through the model to yield embeddings ZA and ZB. By using 
the cosine similarity distance metric, a correlation matrix C is constructed between each embedding vector in 
ZA and each in ZB. An ideal encoder would be robust against the randomly-selected transforms, producing the 
same embedding vector no matter which transform is selected, hence we would like the diagonal of C to be 1. 
Furthermore, images which have different contents should be encoded differently so we can tell them apart from 
their embeddings; hence we would like the off-diagonal elements of C to be zero. This objective at a high level 

Fig. 3  Examples of BenthicNet images from each sampled Ecological Marine Unit (EMU), indicated in the top-
left of each image. See Sayer et al.101 for a full description of the EMU classes.
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can be described as rendering the model embedding space invariant to the transformations applied, while also 
introducing an orthogonality to this model’s embedding space99.

Using the BT SSL paradigm, we trained a ResNet-50 model on the BenthicNet-1M dataset for three different 
durations (100, 200, and 400 epochs) with the LARS optimizer107. The hyperparameters were the same as used 
by Zbontar et al.99, except the learning rate as our initial experiments showed a smaller learning rate of 2 × 10−3 
yielded better performance than the default of 0.2. The learning rate was annealed using a one-cycle cosine 
schedule with a warm-up period of 10 epochs108. The models were trained using four Nvidia A100 GPUs, with a 
total batch size of 512. The utility of the self-supervised model was evaluated for transfer learning using two tests 
with labelled data in the Supervised transfer learning section below.

Labelled data exploratory analysis.  The BenthicNet-Labelled data spans an environmental extent sim-
ilar to that of the BenthicNet-1M data. Two of the EMUs that were abundantly sampled with unlabelled imagery 
were also prominently represented in the labelled dataset; EMUs 11 (shallow, cool, normal salinity, moderate 
oxygen, low nitrate, low phosphate, low silicate) and 24 (shallow, warm, normal salinity, moderate oxygen, low 
nitrate, low phosphate, low silicate) comprised a near-majority (49.82%) of of the labelled dataset (Fig. 6). These 
two environments are broadly distributed in space101, and here primarily represent datasets from Australia, 
Tasmania, and Central America. The full distribution of labels across the CATAMI hierarchy is provided within 
the dataset hosted on FRDR62.

Supervised transfer learning.  Here we provide two examples of utilizing a large model pretrained with SSL on 
the unlabelled BenthicNet-1M dataset for automating benthic image labelling tasks.

Fig. 4  Distribution of BenthicNet-1M images according to bottom layer Ecological Marine Units (EMUs).  
(a) Proportion and area of global oceans classified into each EMU. (b) Proportion of BenthicNet image samples 
from each EMU. See Sayer et al.101 for a full description of the EMU classes.
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First, we trained a model to classify the substrate visible in benthic imagery at the granularity of the sec-
ond level in the CATAMI substrate hierarchy, comprised of the 5 classes “Sand/mud”, “Pebble/gravel”, 
“Cobbles”, “Boulders”, and “Rock”. This model was trained using the subset of BenthicNet-Labelled 
containing singly-annotated images with substrate labels at this level. We refer to this subset as the 
“BenthicNet-Substrate-d2” dataset, comprised of 57149 images — 43430 of which were used for training, and 
13719 for testing (partitioned as described above in Labelled data). Using the pretrained ResNet-50 backbone, 
we added a linear classifier head with softmax activation to predict the class of the image. The targets were 
one-hot encoded. To evaluate the utility of SSL pretraining on the BenthicNet-1M dataset, we also compare 
against transfer learning from a publicly available ResNet-50 model(torchvision.models.ResNet50_
Weights.IMAGENET1K_V2) pretrained with cross-entropy on ImageNet-1k (600 epochs), provided by 
torchvision109, and against training from scratch on BenthicNet-Substrate-d2 without any pretraining.

Our supervised classification pipeline consists of two stages: a linear probe and fine-tuning. During the linear 
probe, the pretrained encoder weights are frozen whilst the new linear classifier head is trained. We trained the 
classifier head for 100 epochs with a one-cycle cosine annealing scheduler for the learning rate. As with the SSL 
training, the learning rate started at 3 × 10−6, and linearly increased to a maximum of 3 × 10−5 over 10 warm-up 
epochs, then was cosine annealed back down to the original rate. For the fine-tuning stage, we begin with the 
pretrained encoder and the classifier head from the linear probe. We unfreeze the encoder, and train the whole 
network end-to-end with one tenth the learning rate used for the linear probe for 300 epochs (a total training 
period of 400 epochs across both stages).

The transfer-learning models were compared to models trained from scratch. These were randomly initial-
ized, and the entire model (encoder and classifier) trained end-to-end for 100 or 400 epochs, using the one-cycle 
schedule with peak learning rate 3 × 10−5.

As shown in Table 5, the performance of the fine-tuned ImageNet-1k and BenthicNet-1M pretrained models 
was comparable when evaluated on unseen BenthicNet-Substrate-d2 test data according to the accuracy and 

Fig. 5  Distribution of BenthicNet-1M images according to global ocean basins101. (a) Proportion and area of 
ocean basins. (b) Proportion of BenthicNet image samples from each ocean basin.

https://doi.org/10.1038/s41597-025-04491-1


17Scientific Data |          (2025) 12:230  | https://doi.org/10.1038/s41597-025-04491-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

F1-score (the harmonic mean of precision and recall). The fine-tuned (unfrozen) pre-trained models outper-
formed models trained from scratch, or trained with a frozen pre-trained backbone (a “linear probe”). The linear 
probe models failed to outperform models trained from scratch for 400 epochs (i.e. with no pre-training). The 
confusion matrices (Fig. 7) suggest that the models have similar biases, confusing the same classes as each other 
(Boulders  → Cobbles; Rock  → Pebble/gravel; Pebble/gravel  → Sand/mud).

As a second task, we considered the German Bank 2010 dataset provided by DFO (Table 1), which had 
whole-image “benthoscape” labels described by Brown et al.75. In the original labelling scheme, five benthoscape 

Fig. 6  Distribution of BenthicNet images according to bottom layer Ecological Marine Units (EMUs) for  
(a) unlabelled and (b) labelled datasets. See Sayer et al.101 for a full description of the EMU classes.

Pretraining

Frozen Epochs Accuracy ↑ F1-score ↑Dataset Loss

ImageNet-1k Cross-entropy ✓ 100 81.8 ± 0.1 56.6 ± 0.3

BenthicNet-1M Barlow Twins ✓ 100 83.6  ± 0.1 57.7  ± 0.3

No pretraining ✗ 100 81.0 ± 0.6 55.3 ± 1.5

No pretraining ✗ 400 83.8 ± 0.1 61.8 ± 0.3

ImageNet-1k Cross-entropy ✗ 100+300 88.3  ± 0.1 69.5  ± 0.3

BenthicNet-1M Barlow Twins ✗ 100+300 88.1 ± 0.1 68.5 ± 0.2

Table 5.  Micro-accuracy and macro F1-score (%) on BenthicNet-Substrate-d2 test data when training from 
scratch (No pretraining), with linear probe of a pretrained encoder (Frozen) or fine tuning (not frozen). Mean 
(±std. err.) over 3 random seeds (same pretrained backbones over seeds). Bold: best performing linear probe 
and fine-tuned models.
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labels were assigned that describe recognizable combinations of substrate, bedforms, and biology visible in 3181 
images, collected off the southwest coast of Nova Scotia, Canada. The benthoscape labels were (1) “reef ” in 
which boulders or bedrock with frequent epifauna comprise more than 50% of images; (2) “glacial till” consist-
ing of mixed sediments (cobble, gravel, sand); (3) “silt/mud” with frequent evidence of infaunal bioturbation; 
(4) “silt with bedforms”; and (5) “sand with bedforms”, which commonly included sand dollars (Echinarachnius 
parma). Again, the pretrained ResNet-50 models were utilized by adding a new classifier head with outputs cor-
responding to each of the benthoscape classes. Using the BenthicNet-Labelled partitions (described in Labelled 
data), 2681 images were used to train the model and 500 were used for testing. The model training hyperparam-
eters were identical to those used for the BenthicNet-Substrate-d2 experiments.

As shown in Table 6, we observed that the model pretrained on BenthicNet-1M strongly outperformed both 
the model pretrained on ImageNet-1k and the model trained from scratch when evaluated on unseen test data. 
The fine-tuned BenthicNet-1M model was able to correctly identify “silt/mud” and “silt with bedforms” classes 
in 87% and 88% of cases (see Fig. 8). Both fine-tuned models confused certain class pairs (reef  → glacial till; 
sand with bedforms  → reef; silt with bedforms  → silt/mud), but the BenthicNet-1M SSL pretrained model 
was able to greatly increase the recall of both “silt/mud” and “silt with bedforms”, and greatly reduce confusion 
between other pairs misclassified by the ImageNet-1k model (e.g. glacial till  ↔ sand with bedforms).

An important observation is that for both supervised classification tasks, and both transfer models, the 
best-predicted classes tended to be those that are most distinct, while the intermediate classes were subject to 
confusion. For example, “cobble” was the most difficult label to predict in the BenthicNet-Substrate-d2 dataset, 
and indeed, it can be difficult even for a human to differentiate cobbles from pebbles or boulders in underwater 
imagery. These substrate class boundaries are defined arbitrarily at a particular length scale (2 mm and 64 mm) 
that may only be determined through accurate measurement or image scaling; there is substantial possibility of 
incorrect or subjective human labels for such data. Additionally, the imbalanced priors for the classes may also 
play a role in predictive success. Sand and mud labels dominate both data subsets — it is not surprising that the 
models have a tendency to predict sand for other classes, and to perform strongly on sand.

While performance between the transfer models (ImageNet-1k and BenthicNet-1M) were similar for the 
BenthicNet-Substrate-d2 task, differences in performance on German Bank 2010 were far more pronounced. 

Fig. 7  Confusion matrix (% of ground truth) for CATAMI Substrate predictions on BenthicNet-Substrate-d2 
test data. (Left) Model pretrained with cross-entropy on ImageNet-1k, fine-tuned on BenthicNet-Substrate-d2. 
(Right) Model pretrained with Barlow Twins on BenthicNet-1M, fine-tuned on BenthicNet-Substrate-d2.

Pretraining

Frozen Epochs Accuracy ↑ F1-score ↑Dataset Loss

ImageNet-1k Cross-entropy ✓ 100 37.6 ± 5.2 30.0 ± 2.9

BenthicNet-1M Barlow Twins ✓ 100 55.9  ± 2.4 43.2  ± 6.0

No pretraining ✗ 100 53.4 ± 2.4 43.0 ± 3.8

No pretraining ✗ 400 54.1 ± 3.2 46.7 ± 3.2

ImageNet-1k Cross-entropy ✗ 100+300 65.9 ± 4.0 59.2 ± 4.2

BenthicNet-1M Barlow Twins ✗ 100+300 77.0  ± 0.7 72.3  ± 0.8

Table 6.  Micro-accuracy and macro F1-score (%) on German Bank 2010 test data when training from scratch 
(No pretraining), with linear probe of a pretrained encoder (Frozen) or fine tuning (not frozen). Mean (±std. err.) 
over n = 3 random seeds (same pretrained backbones over seeds). Bold: best performing linear probe and fine-
tuned models.
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Notably, our self-supervised model was the strongest performing across all aspects of the evaluation — outper-
forming all others using both linear probes and fine tuning Table 6. The fine-tuned results for BenthicNet-1M 
also demonstrate less variance compared to the other models. We conjecture that, while transfer learning may 
perform well for both pretrained models if the labelled dataset is large enough (i.e. tens of thousands of labelled 
images for the BenthicNet-Substrate-d2 task), the BenthicNet-1M SSL pretrained model is better able to trans-
fer to smaller, more specific classification tasks, where fewer training examples per class are available. Previous 
exposure to over a million relevant images during the SSL phase may have enhanced the ability to separate 
images of broadly similar seafloor type. We note that the size of the German Bank 2010 dataset is similar to 
what might be commonly encountered for a site-specific habitat mapping application (e.g. thousands of labelled 
images). A number of experiments exploring these and related research questions are currently underway — for 
example, on the hierarchical and multi-label CATAMI classification of BenthicNet images110. Our ResNet-50 
model, pretrained on BenthicNet-1M with BT, is accessible from the FRDR repository62.

Usage Notes
We note that data labels translated to the CATAMI scheme were sourced from a wide variety of scientific studies 
with the express intent of supporting the training and validation of large image recognition models. Jointly, these 
labels should be analyzed with care, particularly if utilized for other purposes. Some datasets included whole 
image labels indicating the presence of a single benthic feature (e.g. organism, substrate), while others supplied 
single labels indicating multiple features, or multiple labels for different features within an image. One result of 
such diversity is variation among the completeness of labels from different datasets — some, for example, focus 
on a the presence of single species, or only focus on the most conspicuous or abundant substrate types. For 
some datasets, it is thus reasonable to expect a larger proportion of false negative labels if the data is treated in a 
presence/absence manner. In other words, many benthic features are likely visible in the images, which have not 
been labelled. We operate under the assumption, though, that labels within a dataset were assigned consistently. 
If performing analyses at the dataset level using the compilation presented here, it is important to investigate the 
specifics of the dataset(s) in question.

Similarly, the diversity of labelling methodologies has resulted in a number of different schema by which 
original labels were translated to their CATAMI equivalents. For example, some labels indicating the percent 
cover of organisms or substrate types in an image were converted to binary presence/absence information for the 
purposes of assigning labels. Additionally, auxiliary information provided with labels such as annotator notes 
were used in some cases to obtain a CATAMI label, or to enhance its accuracy. Efforts were made to indicate the 
original data label as closely as possible in the labelled metadata file, but it was not always possible to include 
all information that was used to translate an original label to the CATAMI scheme. Therefore, original labels 
provided in our metadata may not contain all available labelled information for each image, and the original 
datasets should be referenced as the authoritative source in all cases.

The examples provided here focus on the physical environment, but there are abundant opportunities to 
explore use of the biological labels. Through use of the SSL pretrained encoder, we believe that the training and 
deployment of hierarchical morphological and biological identification models is possible. A challenging com-
ponent of this task is the imbalance of biota labels within the dataset. Methods such as over-sampling, weighting, 
and data augmentation may be necessary to achieve and validate effective large-scale supervised models in the 
biota hierarchy of the CATAMI scheme, both to address the label imbalance and the distributional shift from the 
labelled subset of the data to the full range of ocean imagery. These applications will be explored in coming work.

Fig. 8  Confusion matrix (% of ground truth) for the German Bank 2010 test data. (Left) Model pretrained with 
cross-entropy on ImageNet-1k, fine-tuned on German Bank 2010. (Right) Model pretrained with Barlow Twins 
on BenthicNet-1M, fine-tuned on German Bank 2010.
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Code availability
Code used to query, download, convert, process, subsample, and partition the full data compilation may 
be accessed without restriction from https://github.com/DalhousieAI/BenthicNet. Code used to query and 
download data from SQUIDLE+ using the API is available at https://github.com/DalhousieAI/squidle-
downloader. Code used to query and download data from PANGAEA is available at https://github.com/
DalhousieAI/pangaea-downloader. Code used to train the self-supervised model is available at https://github.
com/DalhousieAI/ssl-bentho. Code used to perform one-hot multi-class transfer learning, as presented in the 
section Supervised transfer learning, is available at https://github.com/DalhousieAI/benthicnet_probes.
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